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Finite-Difference Method Without Spurious
Solutions for the Hybrid-Mode Analysis

of Diffused Channel Waveguides

NORBERT SCHULZ, KARLHEINZ BIERWIRTH, FRITZ ARNDT, SENIOR MEMBER, IEEE,
AND UWE KOSTER

Abstract —Diffused dielectric channel waveguides with an arbitrarily

varying refractive index profile in the cross-sectional plane are analyzed

with a rigorous finite-difference method formulated in terms of the wave

equation for the transverse components of the magnetic field. This leads

to an eigenvahse problem where the nonphysical, spurious modes do not

appear. The analysis includes the complete set of hybrid modes, takes

mode-conversion effects and complex waves into account, and allows the

immediate inclusion of large index difference levels as well as the

two-dimensional continuously varying index profile function without

the usual staircase approximation. By way of example, dispersion char-

acteristics are calculated for structures suitable for millimeter-wave and

optical integrated circuits, such as channel waveguides with refractive

index variations having stepped, linear, Gaussian, and exponential

function profiles. The theory is verified by comparison with results

available from other rigorous methods.

I. INTRODUCTION

D IELECTRIC channel waveguides have been the

subject of growing interest for integrated circuit

applications in the millimeter-wave and optical frequency

range, e.g. for phase shifters, electro-optic modulators,

switches, wavelength filters, and couplers [1]–[15]. As

such waveguides are increasingly fabricated by ion im-

plantation, ion exchanging, or diffusion techniques [2], [3],

[5], [6], [8]-[10], [15], many structures of practical interest,

such as channels with two-dimensional graded refractive

index profiles, typically represented by Gaussian, comple-

mentary error, exponential, or quadratic functions, do not

lend themselves to analytical solutions [11]. Therefore, in

the design of integrated circuits utilizing such structures,

it is important to have available a reliable computer

analysis which takes the continuously varying index profile

rigorously into account, is sufficiently general and flexible

to allow dominant-mode and higher order mode solutions
of all desired cases, and avoids the troublesome problem

of nonphysical or “spurious” modes. The finite-difference

formulation in this paper achieves an analysis which meets

all these criteria very well.
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Methods of analyzing channel waveguides have been

the subject of many papers [1]–[1 5]. For step index pro-

files, these include different kinds of mode-matching

techniques [1], the finite-element analysis [3]–[5], the fi-

nite-difference method [7], [13], a modified effective-index

method [12], and a Fourier transform method [14]. One-

dimensional diffused channel waveguides have been ana-

lyzed by finite-element methods [3], [5], [6], by an effective

index method [9], and by an iterative numerical integra-

tion method [10]. Although a number of numerical meth-

ods have already been developed for analyzing channel

waveguides with a two-dimensional diffused index profile

[61, [81, [151, there still exist some significant restrictions.
The single-mode investigation in [6] using a staircase

approximation is based on the usual longitudinal E= – Hz

finite-element formulation and, hence, contains spurious

solutions. Moreover, a step approximation of graded pro-

files has turned out to be insufficient for many cases,

especially at higher frequencies, where the field is con-

centrated increasingly in the smaller regions of higher

permittivity. The variational finite-difference approxima-

tion in [8], based on the scalar wave equation, is valid only

for small index difference levels. The quasi-TE-mode

solution of [8] ignores the physical reality of hybrid modes

on such waveguide structures, as well as the coupling

effects [7], [18] between them. A moment method solu-

tion, such as that outlined in [15] for step basis functions

applied to a circular form for the refractive index, re-

quires changing the Green’s function for waveguides of

more general inhomogeneity, and, therefore, is not con-

sidered sufficiently flexible.

In this paper, a general, flexible, versatile finite-dif-

ference formulation is presented for analyzing the

hybrid-mode propagation in inhomogeneous channel

waveguides (Fig. 1) with arbitrarily varying refractive in-

dex profiles n(x, y) in the cross-sectional plane and with

arbitrary index difference levels. As the continuous varia-

tion of the index profile is rigorously taken into account,

the method avoids the typical errors at higher frequencies

inherent in a staircase approximation. A direct vector

wave equation solution formulated in terms of the trans-

verse magnetic field components HX and HY [7], [11], [13]
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Fig. 1. Channel waveguide with arbitrarily varying index profile E(X, y)

in the cross-sectional plane. Aspect ratio a /b; plot of a
Gaussian–Gaussian profile.

is utilized which leads advantageously to a standard

eigenvalue problem where the zero divergence relation is

implicitly included; hence, spurious modes are completely

eliminated.

The analysis described takes hybrid-mode conversion.

effects into account, such as complex waves, at frequen-

cies where the modes are not yet completely bound to the

core of high dielectric constant, as well as at frequencies

below cutoff. A graded mesh permits a numerically effec-

tive investigation of structures with realistic index profiles

by making the mesh finer in regions of particular interest.

Numerical results compared with available data from

other rigorous methods verify the theory given.

II. THEORY

The vector wave equation describing the wave propaga-

tion in a waveguide with inhomogeneous cross section can

be expressed in terms of two field components, which are

usually taken to be the longitudinal components E= and

Hz [4], [161, [23]. The formulation in terms of the trans-

verse components HX and HY of the magnetic field E is

preferred, however, since it circumvents the spurious-

mode problem by the implicit inclusion of the zero diver-

gence relation [7], [13]. For the diffused channel wave-

guide structures to be investigated, with continuously

varying permittivity E(X, y) in the cross-sectional plane

(Fig. 1 illustrates a two-dimensional Gaussian profile), the

-Av2H+[v(+FJlx’vxfi’=”2’A“)E(x, y)

which is derived directly from Maxwell’s equations. Equa-

tion (1) may be rearranged into a set of two coupled

second-order differential equations:

where ~ = x, y, [ = y, x, and a z dependence of

exp ( – -yZz) of the wave propagation is understood. The

zero divergence relation V“ H = O k implicitly included in

the magnetic field formulation of (1) and yields the ex-

pression for Hz:

‘:=:[:+%1 (3)

A finite cross section is defined by enclosing the guide

in a rectangular box (Fig. 2) where the sidewalls may be

either electric or magnetic walls in order to include cou-

pled structures. Although an exponential decay factor

may be introduced to approximate the infinite exterior

region of related “oper~ structures” [3], in order to appro-

priately include mode investigations also below cutoff, it

is preferred for these cases to make the box large enough

[7] so that its influence on the modes maybe neglected. A
graded mesh, of different side lengths w, n, e,s (Fig. 2),

permits the optimum use of the available computer capa-

bilities for these cases as well.
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Equations (2) are written in their five-point finite-dif-

ference form [16], which leads in this case to four coupled

equations for each component He (f=.x, y) and which

includes explicitly the function ●(x, y) for the graded

index profile. For the special example of an equidistant

mesh, the eight resultant equations may be abbreviated in

the form

+;[02KC(X, Y)li+Y;]Hfp=O (4)

where h=w=e=rz=s; A4L=W,E; A4q=N, S; i=

(1),(2), (3), (4); ~ =x, y; and [ = y, x (cf. Fig. 2). The more
general equations for graded mesh sizes used in this

paper may be derived straightforwardly in the same man-

ner.

Three sets of equivalently satisfactory boundary condi-

tions are possible [7] to properly continue the wave solu-

tion from one subregion to the next (Fig. 2). The case

chosen in this paper, which utilizes two conditions for the

transversal electric and three conditions for the transver-

sal magnetic field for each component under considera-

tion,

H,: E,l = EZ2 EZ~ = EZb HZI = H,z

Hz~ = H,d Hzl = H,l (5)

HY : EZI = EZb E.,z = EZ~ H,l = H,d

HZZ = HZ~ HZI = H:Z (6)

has turned out to yield a slightly better convergence

behavior concerning higher order modes [7].

Utilizing these conditions, the finite-difference equa-
tions (4) result in the magnetic field components at the

discrete node point P in terms of the immediately adja-

cent node points W, E, N, and S (Fig. 2). These equa-

tions are evaluated at each node point P of the mesh,

with appropriate modification to include the related

boundary conditions (electric or magnetic wall) of the

structure to be investigated. In this way, a set of linear

homogeneous equations is derived which results in the

eigenvalue equation [7]

[( A)-/i(u)](x)=o. (7)

Equation (7) is solved by routines of the well-known

EISPACK package [17]. Complex solutions (“complex

waves”), due to hybrid-mode conversion effects [7], [18], if

they exist, e.g. at shielded dielectric waveguides, are in-

cluded in the analysis.

The method has been verified [7] by comparisons with

results available from the rigorous modal expansion
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Fig. 3. Channel waveguide with a step index profile. Normalized prop-

agation characteristic B versus normalized frequency P’. Comparison

with results of the mode matching method of [19]. B = [(/3=/kO)z –

c21\[c3 —c21, ~= ko”b”~~, ko=~ 6“

method, e.g. for the shielded dielectric waveguide [18].

For typical structures and frequencies, for about 20 node

points in the x and y directions, the error was less than

about 0.05% for the first four modes. For about ten node

points in each direction, the results correspond nearly to

the asymptotic value; this may also be stated for higher

order modes.

III. RESULTS

For the example of an ordinary channel waveguide with

step index profile, Fig. 3 compares the results of our

finite-difference analysis with those of the rigorous

mode-matching method in [19]. Good agreement may be

stated.

Shielded dielectric waveguides (where one waveguide,

the dielectric waveguide, perturbs the propagation of an-

other one, the rectangular waveguide, and vice versa)

show the effect of complex waves [18] very distinctly. Fig.

4, where the normalized propagation constants of the

modes of a shielded dielectric waveguide are plotted

against the permittivity, allows the modes to be assigned

directly to rectangular waveguide modes (e, =1) at a

finite frequency (e.g. 14 GHz). Nevertheless, the plot

against ~r may be considered as a (slightly distorted)

dispersion curve, since increasing permittivity corresponds

to a nonlinear frequency scale. Included in Fig. 4 is the

evanescent mode range, whereby the corresponding real

a values are plotted in the same diagram but, for lucidity,

in the opposite direction, as in [18]. Between e, = 1 .0.2.4
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Fig. 4. Shielded dielectric waveguide. Propagation constant y normalized with the free-space wavenumber plotted against
permittivity ~, at ~ =14 GHz, calculated with the finite-difference method (- --- complex waves).

and Er =4.5.”. 5.3, the eigenvalue solution leads to a

complex propagation constant yC~ = +- aCW* ~CW, in spite

of the assumption that the shielded dielectric waveguide

is lossless. This effect is well known by the term complex

wave (cf. e.g. [7] and [181).

Since actual “open” diffused channel waveguides show

no leakage effects [20], for the analysis in this paper the

enclosing rectangular box is chosen to be large enough

(cf. also [7]) so that its role in inducing such effects may

be neglected. Furthermore, for diffused channel wave-

guides the propagation factors as well as the frequency

are usually so normalized that there is no critical “cutoff”

frequency included in the dispersion curves shown.

The typical CPU time required for the finite-difference

analysis described may be demonstrated by the example

of Fig. 4. Utilizing the magnetic wall symmetry at x = O,

and 15x 15 mesh points, the calculation of all eigenvalues

involved in the matrix, and of ten related eigenvectors,

requires about 4 min on a Siemens 7880 mainframe

computer, while using a RAM of about 4 megabytes.

The clear advantage of the finite difference HX – Hv

formulation utilized in this paper is the complete elimina-

tion of the spurious mode problem, in contrast to the

formulation in terms of the longitudinal components. This

advantage, especially for the dielectric waveguiding struc-

tures under investigation, has already been illustrated in

[71, where both formulations have been applied and com-
pared at a dielectric channel guide. Moreover, the method

can also include lossy structures and metallizations on

planar dielectric waveguides. However, it should be men-

tioned that, owing to the implicit divergence relation, the

HX – HY finite difference method would not be very appro-

priate for investigating the usual microwave or

millimeter-wave planar or quasi-planar transmission lines

(such as microstrip or finlines) with metal strips of finite

thickness and very high conductivity K ~ m, as local singu-

larities near sharp metallic edges may occur. For those

structures, the convent ional E, – HZ formulation would be

preferred [23].

For a channel waveguide with a step index profile in

the x direction and a linear profile in the y direction, Fig.

5(a) compares the results of the rigorous finite-difference

method of this paper with those of a staircase approxima-

tion by applying the finite-difference formulation for

rectangular layered structures [7]. For this special one-

dimensional graded structure, good agreement may be

observed. However, for a more general channel wave-

guide with a two-dimensional graded index profile (Fig.

5(b)), the step approximation turns out to be insufficient.

Assuming a Gaussian-. Gaussian (x, y) dependence of in-

dex and using the staircase approximation, good coinci-

dence with the rigorous theory is obtained only for lower

frequencies. For higher frequencies, where the field is

concentrated increasingly in the smaller regions of higher

permittivity, the resu k of the staircase approximation

differs significantly from the rigorous finite difference

analysis (solid line, Fig. 5(b)), especially for a small num-

ber of steps.

Fig. 6 presents the normalized propagation characteris-

tic of a practical diffused channel waveguide with a
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Fig. 5. Channel waveguide with continuously varying index profile.
Comparison of the normalized propagation characteristic B calcu-
lated by the rigorous finite-difference formulation for continuously
varying index profiles (solid lines) with that of a staircase finite-dif-
ference approximation (•, +, A) [71. B = [(PZ /kO)* – e21/[em.X – ezl,
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62=46 ~ = ~ma,. (b) Two-dimensional graded index profile with a
6aussian-Gaussian (x,y) dependence: a/b= 1,6, = ●O, 62 = 2.1c0,
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Fig. 6. Diffused channel waveguide with a Gaussian–Gaussian index
profile. (a) Comparison of the normalized propagation characteristic
B versus normalized frequency V with results of [8]: B = [(~z /kO)z –

c2]/[cmaX–e2], V=ko.a.~G, ko=w=, a/b=l, el=

●(l, E2=2.1.s0, cm,X=l.052e2. (b) Normalized propagation character-

istic B versus normalized frequency V for hybrid Hy and Hx modes.
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Fig. 8. Coupled slab waveguide structure of[21]and [22]. Comparison
of the rigorous finite-difference method with the coupled mode the-
ory. (a) Permittivity ~, versus the position y of the coupled slab

waveguide. (b) Propagation constant versus waveguide spacing t3,
including the tighter coupling range, comparison with [21] and [22],
and the exact results according to [22].

Gaussian–Gaussian profile [8]. Such profiles are realistic

in the case of titanium diffusion in LiNb03 and Ag + –Na +

ion-exchanged glass waveguides [8]. Because of the scalar

wave equation TE-mode approximation in [8], only poor

agreement between our exact hybrid-mode analysis and

the results of [8] may be stated (Fig. 6(a)). Fig. 6(b)

demonstrates the exisl ence of additional hybrid H~n

modes cm such structures, which, although in proximity,

may be clearly distinguished from the H~n propagation

curves.

Since no spurious mc~des occur in the finite-difference

analysis described, the lmethod is appropriate for analyz-

ing more complicated phenomena at channel waveguides

with an arbitrary index distribution in the cross-sectional

plane, such as hybrid-mode crossing effects (cf. Fig. 7),

which have been observed at shielded rectangular dielec-
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TABLE I

COMPARISON OF THE PROPAGATION CONSTANTS OF THE SLAB WAVEGUIDE STRUCTURE (FJG. Ma))

ACCORDING TO [22] WITH THE RESULTS PRESENTED IN [22] (EXACT [22], VP= VARIATIONAL

PRINCIPLE [22]; HS = COUPLED MODE TI+EORY OF

HARDY AND STREIFER [21]) AND OURTHEORY

t3 EXACT 131
Our Theory

VP B, HS B, EXACT (+ VP q HS 82
B, B*

,
0.2 27.080973 I 27.074848 ! 27.074770 26.706625 26.592396 ~ 26.591887 27.0809 26.7067

.L— —1

0.4 27.004524 I 27.002506 ~ 27,002435 ;I 26.818386 E ~ 26.808418 27,0045 , 26.8183

0.6 26.970045 ~ 26.969301 I ~ 26.881945 ‘ 26.881931 26,!lioo 26.8833

0.8 26.952740 26.952501 ~ 26.952501 ~ 26.911228 1 26.910957 I 26.910557 ?6.9526 26.9111

1.0 26.943722 ~ 26.943722 Pf26.923483 ~ 26.923483
~.——.

26.943789 26.9437 I 26.9234

tric waveguides, insulated image guides, and inverted strip

guides as well [11, [71, [201. Note that such crossing effects

may exist without the necessity of additional complex

waves at the related frequency ranges (cf. Fig. 4). More-

over, for the class of indiffused channel waveguides shown

in Fig. 7, the modes are purely bound [20]. Consequently,

despite a high resolution search for complex solutions at

the frequency regions where crossing effects occur, no

complex waves have been observed. For a Gaussian–

exponential index profile chosen by way of example, Fig.

7(a) shows that the dispersion curves of the H~l and H{l

modes, which are concentrated in the region of higher

permittivity with higher velocity, cross those of the H;’,

and H~z modes, respectively. This effect is more pro-

nounced for an exponential–Gaussian or parabolic–ex-

ponential index profile (not shown here).

Many results are available from the approximate cou-

pled mode theories [21], [22]. A comparison with the

rigorous finite difference method presented in this paper

is considered to be particularly informative, as it might be

possible to use the method reported to validate the range

of applications of the coupled mode theory. Fig. 8(a)

shows the example of a coupled slab waveguide structure

considered in [21], [22]. The improved coupled mode

theory of Hardy and Streifer shows good agreement with

our results for the example reported in [22] for relatively

weak coupling values (t3 >0.4 pm, cf. Fig. 8(b)). For

tighter coupling, however, the results differ considerably:

for the coupling region t3= 0.2. 0.0.4 ~m, only poor

agreement between our rigorous theory (which meets the

exact results) and the coupled mode theory of Hardy and

Streifer (HS) [21], [22], or the variational principle of [22],

respectively, may be observed. A table of values (Table I)

shows the differences more accurately.

IV. CONCLUSIONS

A rigorous finite-difference analysis for diffused dielec-

tric channel waveguides with an arbitrarily varying refrac-

tive index profile in the cross-sectional plane is presented.

The vector wave equation formulation in terms of the

transverse magnetic field components circumvents the

spurious-mode problem by the implicit inclusion of

the zero divergence relation. Moreover, the method takes

complex waves, if they exist, into account. A graded mesh

permits the optimum use of the available computer capa-

bilities. The analysis allows the investigation of the com-

plete set of hybrid modes on single and coupled diffused

waveguide structures of practical interest, including cases

of large index difference levels, and achieves the immedi-

ate inclusion of the two-dimensional continuously varying

index profile function without the usual staircase approxi-

mation. Furthermore, the rigorous method described may

be used to validate the range of applications of the

approximate coupled mode technique. The theory given is

verified by comparison with results available from other

rigorous methods.
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