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Abstract —Diffused dielectric channel waveguides with an arbitrarily
varying refractive index profile in the cross-sectional plane are analyzed
with a rigorous finite-difference method formulated in terms of the wave
equation for the transverse components of the magnetic field. This leads
to an eigenvalue problem where the nonphysical, spurious medes do not
appear. The analysis includes the complete set of hybrid modes, takes
mode-conversion effects and complex waves into account, and allows the
immediate inclusion of large index difference levels as well as the
two-dimensional continuously varying index profile function without
the usual staircase approximation. By way of example, dispersion char-
acteristics are calculated for structures suitable for millimeter-wave and
optical integrated circuits, such as channel waveguides with refractive
index variations having stepped, linear, Gaussian, and exponential
function profiles. The theory is verified by comparison with results
available from other rigorous methods.

I. INTRODUCTION

IELECTRIC channel waveguides have been the
Dsubject of growing interest for integrated circuit
applications in the millimeter-wave and optical frequency
range, €.g. for phase shifters, electro-optic modulators,
switches, wavelength filters, and couplers [1]-[15]. As
such waveguides are increasingly fabricated by ion im-
plantation, ion exchanging, or diffusion techniques {21, [3],
(5], [6], [8]-[10], [15], many structures of practical interest,
such as channels with two-dimensional graded refractive
index profiles, typically represented by Gaussian, comple-
mentary error, exponential, or quadratic functions, do not
lend themselves to analytical solutions [11]. Therefore, in
the design of integrated circuits utilizing such structures,
it is important to have available a reliable computer
analysis which takes the continuously varying index profile
rigorously into account, is sufficiently general and flexible
to allow dominant-mode and higher order mode solutions
of all desired cases, and avoids the troublesome problem
of nonphysical or “spurious” modes. The finite-difference
formulation in this paper achieves an analysis which meets
all these criteria very well.
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Methods of analyzing channel waveguides have been
the subject of many papers [1]-[15]. For step index pro-
files, these include different kinds of mode-matching
techniques [1], the finite-element analysis [3]-[5], the fi-
nite-difference method [7], [13], a modified effective-index
method [12], and a Fourier transform method [14]. One-
dimensional diffused channel waveguides have been ana-
lyzed by finite-element methods [3], [5], [6], by an effective
index method [9], and by an iterative numerical integra-
tion method [10]. Although a number of numerical meth-
ods have already been developed for analyzing channel
waveguides with a two-dimensional diffused index profile
[6], [8], [15], there still exist some significant restrictions.

The single-mode investigation in [6] using a staircase
approximation is based on the usual longitudinal E.- H,
finite-element formulation and, hence, contains spurious
solutions. Moreover, a step approximation of graded pro-
files has turned out to be insufficient for many cases,
especially at higher frequencies, where the field is con-
centrated increasingly in the smaller regions of higher
permittivity. The variational finite-difference approxima-
tion in [8], based on the scalar wave equation, is valid only
for small index difference levels. The quasi-TE-mode
solution of [8] ignores the physical reality of hybrid modes
on such waveguide structures, as well as the coupling
effects [7], [18] between them. A moment method solu-
tion, such as that outlined in [15] for step basis functions
applied to a circular form for the refractive index, re-
quires changing the Green’s function for waveguides of
more general inhomogeneity, and, therefore, is not con-
sidered sufficiently flexible.

In this paper, a general, flexible, versatile finite-dif-
ference formulation is presented for analyzing the
hybrid-mode propagation in inhomogeneous channel
waveguides (Fig. 1) with arbitrarily varying refractive in-
dex profiles n(x,y) in the cross-sectional plane and with
arbitrary index difference levels. As the continuous varia-
tion of the index profile is rigorously taken into account,
the method avoids the typical errors at higher frequencies
inherent in a staircase approximation. A direct vector
wave equation solution formulated in terms of the trans-
verse magnetic field components H, and H, [7], [11], [13]
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Channel waveguide with arbitrarily varying index profile e(x, y)
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Fig. 1.
in the cross-sectional plane.
Gaussian—Gaussian profile.

is utilized which leads advantageously to a standard
eigenvalue problem where the zero divergence relation is
implicitly included; hence, spurious modes are completely
eliminated.

The analysis described takes hybrid-mode conversion.

effects into account, such as complex waves, at frequen-
cies where the modes are not yet completely bound to the
core of high dielectric constant, as well as at frequencies
below cutoff. A graded mesh permits a numerically effec-
tive investigation of structures with realistic index profiles
by making the mesh finer in regions of particular interest.
Numerical results compared with available data from
other rigorous methods verify the theory given.

II. THEORY

The vector wave equation describing the wave propaga-
tion in a waveguide with inhomogeneous cross section can
be expressed in terms of two field components, which are
usually taken to be the longitudinal components E, and
H, [4], [16], [23]. The formulation in terms of the trans-
verse components H, and H, of the magnetic field H is
preferred, however, . since 1t circumvents the spurious-
mode problem by the implicit inclusion of the zero diver-
gence relation [7], [13]. For the diffused channel wave-
guide structures to be investigated, with continuously
varying permittivity e(x,y) in the cross-sectional plane
(Fig. 1 illustrates a two-dimensional Gaussian profile), the
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Fig. 2. Graded mesh of the five-point finite-difference representation.

finite-difference method should therefore yield a numeri-
cal solution to the vector wave equation

1 o I

which is derived directly from Maxwell’s equations. Equa-
tion (1) may be rearranged into a set of two coupled
second-order differential equations:

oM | SH, 1 5c o,

8¢? 5g2 € 8, 6¢

+[w p,e—FyZ]H =0 (2)

e(x,y) y)

1 6e 8H;

€dl B

where ¢é=x,y, {=y,x, and "a z dependence of
exp(—v,z) of the wave propagation is understood. The
zero divergence relation V- H = 0 is implicitly included in
the magnetlc field formulation of (1) and y1elds the ex-
pression for H,:

z
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A finite cross section is defined by enclosing the guide
in a rectangular box (Fig. 2) where the sidewalls may be
either electric or magnetic walls in order to include cou-
pled structures. Although an exponential decay factor
may be introduced to approximate the infinite exterior
region of related “open structures” [3], in order to appro-
priately include mode -investigations also below cutoff, it
is preferred for these cases to make the box large enough
[7] so that its influence on the modes may be neglected. A
graded mesh, of different side lengths w,n,e,s (Fig. 2),
permits the optimum use of the available computer capa-
bilities for these cases as well.
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Equations (2) are written in their five-point finite-dif-
ference form [16], which leads in this case to four coupled
equations for each component H, (£ =x,y) and which
includes explicitly the function e(x,y) for the graded
index profile. For the special example of an equidistant
mesh, the eight resultant equations may be abbreviated in
the form

1 1 2 1 8H,
PHfMt+ﬁHfM«_(P)H5Piﬁa_§
h 8e(x,y)
+_7
+ e(x,y)l,_2 ol
1 8H, . 1 de(x,y) 8H,
he(x.y) | 8L |, 2e(x,y)|, 8 8¢ |

(4)

where h=w=e=n=s; M, =W,E,; Mq:N,S; e
M), (2),(3),(d); £ =x,y; and { =y, x (cf. Fig. 2). The more
general equations for graded mesh sizes used in this
paper may be derived straightforwardly in the same man-
ner.

Three sets of equivalently satisfactory boundary condi-
tions are possible [7] to properly continue the wave solu-
tion from one subregion to the next (Fig. 2). The case
chosen in this paper, which utilizes two conditions for the
transversal electric and three conditions for the transver-
sal magnetic field for each component under considera-
tion,

1
+5[w2,ue(x,y)|i+yzz]H§P=0

H,: E,=E, Es=E, H,=H,

H,=H, H,=H, (5)
Hy: E,=E, E,=E; H,=H,

H,=H,; H,=H, (6)

has turned out to yield a slightly better convergence
behavior concerning higher order modes [7].

Utilizing these conditions, the finite-difference equa-
tions (4) result in the magnetic field components at the
discrete node point P in terms of the immediately adja-
cent node points W, E, N, and S (Fig. 2). These equa-
tions are evaluated at each node point P of the mesh,
with appropriate modification to include the related
boundary conditions (electric or magnetic wall) of the
structure to be investigated. In this way, a set of linear
homogeneous equations is derived which results in the
eigenvalue equation [7]

[(A4) = A(U)](X) =0. (7)
Equation (7) is solved by routines of the well-known
EISPACK package [17]. Complex solutions (“complex
waves””), due to hybrid-mode conversion effects [7], [18], if
they exist, e.g. at shielded dielectric waveguides, are in-
cluded in the analysis.
The method has been verified [7] by comparisons with
results available from the rigorous modal expansion
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Fig. 3. Channel waveguide with a step index profile. Normalized prop-
agation characteristic B versus normalized frequency V. Comparison
with results of the mode matching method of [19]. B=[(B, / k) —
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method, e.g. for the shielded dielectric waveguide [18].
For typical structures and frequencies, for about 20 node
points in the x and y directions, the error was less than
about 0.05% for the first four modes. For about ten node
points in each direction, the results correspond nearly to
the asymptotic value; this may also be stated for higher
order modes.

III. Resurts

For the example of an ordinary channel waveguide with
step index profile, Fig. 3 compares the results of our
finite-difference analysis with those of the rigorous
mode-matching method in [19]. Good agreement may be
stated.

Shielded dielectric waveguides (where one waveguide,
the dielectric waveguide, perturbs the propagation of an-
other one, the rectangular waveguide, and vice versa)
show the effect of complex waves [18] very distinctly. Fig.
4, where the normalized propagation constants of the
modes of a shielded dielectric waveguide are plotted
against the permittivity, allows the modes to be assigned
directly to rectangular waveguide modes (e, =1) at a
finite frequency (e.g. 14 GHz). Nevertheless, the plot
against e, may be considered as a (slightly distorted)
dispersion curve, since increasing permittivity corresponds
to a nonlinear frequency scale. Included in Fig. 4 is the
evanescent mode range, whereby the corresponding real
a values are plotted in the same diagram but, for lucidity,
in the opposite direction, as in [18]. Between e, =1-++2.4
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Fig. 4. Shielded dielectric waveguide. Propagation constant y normalized with the free-space wavenumber plotted against

permittivity €, at f = 14 GHz, calculated with the finite-difference method (---

and e,=4.5"---5.3, the cigenvalue solution leads to a
complex propagation constant vy,,, = + «,,, + B,,,, il spite
of the assumption that the shielded dielectric waveguide
is lossless. This effect is well known by the term complex
wave (cf. e.g. [7] and [18]).

Since actual “open” diffused channel waveguides show
no leakage effects [20], for the analysis in this paper the
enclosing rectangular box is chosen to be large enough
(cf. also [7]) so that its role in inducing such effects may
be neglected. Furthermore, for diffused channel wave-
guides the propagation factors as well as the frequency
are usually so normalized that there is no critical “cutoff”
frequency included in the dispersion curves shown.

The typical CPU time required for the finite-difference
analysis described may be demonstrated by the example
of Fig. 4. Utilizing the magnetic wall symmetry at x =0,
and 15 X 15 mesh points, the calculation of all eigenvalues
involved in the matrix, and of ten related eigenvectors,
requires about 4 min on a Siemens 7880 mainframe
computer, while using a RAM of about 4 megabytes.

The clear advantage of the finite difference H,-H,
formulation utilized in this paper is the complete elimina-
tion of the spurious mode problem, in contrast to the
formulation in terms of the longitudinal components. This
advantage, especially for the dielectric waveguiding struc-
tures under investigation, has already been illustrated in
[7], where both formulations have been applied and com-
pared at a dielectric channel guide. Moreover, the method
can also include lossy structures and metallizations on
planar dielectric waveguides. However, it should be men-

- complex waves).

tioned that, owing to the implicit divergence relation, the
H, - H, finite difference method would not be very appro-
priate for investigating the usual microwave or
millimeter-wave planar or quasi-planar transmission lines
(such as microstrip or finlines) with metal strips of finite
thickness and very high conductivity k =, as local singu-
larities near sharp metallic edges may occur. For those
structures, the conventional E,— H, formulation would be
preferred [23].

For a channel waveguide with a step index profile in
the x direction and a linear profile in the y direction, Fig.
5(a) compares the results of the rigorous finite-difference
method of this paper with those of a staircase approxima-
tion by applying the finite-difference formulation for
rectangular layered structures [7]. For this special one-
dimensional graded structure, good agreement may be
observed. However, for a more general channel wave-
guide with a two-dimensional graded index profile (Fig.
5(b)), the step approximation turns out to be insufficient.
Assuming a Gaussian-Gaussian (x, y) dependence of in-
dex and using the staircase approximation, good coinci-
dence with the rigorous theory is obtained only for lower
frequencies. For higher frequencies, where the field is
concentrated increasingly in the smaller regions of higher
permittivity, the result of the staircase approximation
differs significantly from the rigorous finite difference
analysis (solid line, Fig. 5(b)), especially for a small num-
ber of steps.

Fig. 6 presents the normalized propagation characteris-
tic of a practical diffused channel waveguide with a
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ference approximation (O, +,A) [7]. B =[(B, /ko)* — €51 /Temax — €2}, Fig. 6. Diffused channel waveguide with a Gaussian—Gaussian index
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of the rigorous finite-difference method with the coupled mode the-
ory. (a) Permittivity €, versus the position y of the coupled slab
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including the tighter coupling range, comparison with [21] and [22],
and the exact results accordmg to [22].

Gaussian—Gaussian profile [8]. Such profiles are realistic
in the case of titanium diffusion in LiNbO, and Ag*-Na ™"
ion- exchanged glass waveguides [8] Because of the scalar
wave equation TE-mode approximation in [8], only poor -
agreement between our exact hybrid-mode analysis and
the results of [8] may be stated (Fig. 6(a)). Fig. 6(b)
demonstrates the existence of additional hybrid H,,,
modes on such structures, which, although in proximity,
may be clearly distinguished from the H},, propagation
curves.

Since no spurious modes occur in the finite-difference
analysis described; the method is appropriate for analyz-
ing more complicated phenomena at channel waveguides
with an arbitrary index distribution in the cross-sectional
plane, such as hybrid-mode crossing effects (cf. Fig. 7),
which have been observed at shielded rectangular dielec-
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TABLE 1
COMPARISON OF THE PROPAGATION CONSTANTS OF THE SLAB WAVEGUIDE STRUCTURE (F1G. 8(a))
ACCORDING TO [22] wiTH THE REsULTS PRESENTED IN [22] (EXACT [22], VP = VARIATIONAL
PrincreLe [22]; HS = CourLEDp MoDE THEORY OF
HARDY AND STREIFER [21]) AND OUR THEORY

Our  Theory
tg EXACT 8, wooBy HS By EXACT By w5, HS 8 ’, i
0.2 27.080973 | 27.074848 | 27.074770 | 26.706625 | 26.592396 | 26.591887 27.0809 26.7067
0.4 27.004524 | 27.002506 I 27.002435 | 26.818386 | 26.808483 : 26.808418 27.0045 26.8183
0.6 26.970045 | 26.959301 ; 26.969296 | 26.883347 | 26.881945 : 26.881931 26.9/00 26.8833
0.8 26.952740 | 26.952501 1 26.852501 | 26.911228 | 26.910957 |, 26.910957 26.9526 | 26.9111
1.0 26.943789 | 26.943722 i 26.943722 | 26.923542 | 26.823483 | 26.923483 26.9437 ; 26.9234

tric waveguides, insulated image guides, and inverted strip
guides as well [1], [7], [20]. Note that such crossing effects
may exist without the necessity of additional complex
waves at the related frequency ranges (cf. Fig. 4). More-
over, for the class of indiffused channel waveguides shown
in Fig. 7, the modes are purely bound [20]. Consequently,
despite a high resolution search for complex solutions at
the frequency regions where crossing effects occur, no
complex waves have been observed. For a Gaussian—
exponential index profile chosen by way of example, Fig.
7(a) shows that the dispersion curves of the H}, and HJ
modes, which are concentrated in the region of higher
permittivity with higher velocity, cross those of the HY,,
and HJ, modes, respectively. This effect is more pro-
nounced for an exponential-Gaussian or parabolic—ex-
ponential index profile (not shown here).

Many results are available from the approximate cou-
pled mode theories [21], [22]. A comparison with the
rigorous finite difference method presented in this paper
is considered to be particularly informative, as it might be
possible to use the method reported to validate the range
of applications of the coupled mode theory. Fig. 8(a)
shows the example of a coupled slab waveguide structure
considered in [21], [22]. The improved coupled mode
theory of Hardy and Streifer shows good agreement with
our results for the example reported in [22] for relatively
weak coupling values (z,>0.4 um, cf. Fig. 8(b)). For
tighter coupling, however, the results differ considerably:
for the coupling region #;=02---04 wm, only poor
agreement between our rigorous theory (which meets the
exact results) and the coupled mode theory of Hardy and
Streifer (HS) [21], [22], or the variational principle of [22],
respectively, may be observed. A table of values (Table I)
shows the differences more accurately.

IV. ConcLusions

A rigorous finite-difference analysis for diffused dielec-
tric channel waveguides with an arbitrarily varying refrac-
tive index profile in the cross-sectional plane is presented.
The vector wave equation formulation in terms of the
transverse magnetic field components circumvents the

spurious-mode problem by the implicit inclusion of
the zero divergence relation. Moreover, the method takes
complex waves, if they exist, into account. A graded mesh
permits the optimum use of the available computer capa-
bilities. The analysis allows the investigation of the com-
plete set of hybrid modes on single and coupled diffused
waveguide structures of practical interest, including cases
of large index difference levels, and achieves the immedi-
ate inclusion of the two-dimensional continuously varying
index profile function without the usual staircase approxi-
mation. Furthermore, the rigorous method described may
be used to validate the range of applications of the
approximate coupled mode technique. The theory given is
verified by comparison with results available from other
rigorous methods.
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